

AZ-400T00: Designing and Implementing

Microsoft® DevOps Solutions
Duration: 5 Days

Method: Instructor-Led Training (ILT) | Live Online Training

Certification: Microsoft Certified: DevOps Engineer Expert — Exam:

AZ-400: Designing and Implementing Microsoft DevOps Solutions

Course Description
This course provides the knowledge and skills to design and implement DevOps processes and

practices. Participants will learn how to:

 Plan for DevOps,

 Use source control,

 Scale Git for an enterprise,

 Consolidate artefacts,

 Design a dependency management strategy,

 Manage secrets,

 Implement continuous integration,

 Implement a container build strategy,

 Design a release strategy,

 Set up a release management workflow,

 Implement a deployment pattern, and

 Optimize feedback mechanisms.

Target Audience
This course is intended for persons who are interested in:

 Designing and implementing DevOps processes

 Passing the certification exam.

Prerequisites
To attend this course, candidates must have either:

 Prior knowledge and understanding of:

o Cloud computing concepts, including an understanding of PaaS, SaaS, and IaaS

implementations.

o Both Azure® administration and Azure development with proven expertise in at least

one of these areas.

o Version control, Agile software development, and core software development principles.

NOTE: It would be helpful to have experience in an organization that delivers software.

Prerequisites Continued
 Completed the following courses to obtain the required knowledge and understanding of:

Delivery

Method

Azure and Cloud

Computing:
Azure Administration: Azure Developer:

Instructor-

Led

 AZ-900T00/T001:

Azure

Fundamentals

 AZ-104T00: Microsoft Azure

Administrator AND AZ-

010T00: Azure

Administration for AWS

SysOps

 AZ-204 T00: Developing

Solutions for Microsoft

Azure AND AZ-020 T00:

Microsoft Azure Solutions

for AWS Developers

Self-Study
 Azure

Fundamentals

 Prerequisites for Azure

Administrators

 Create Serverless

Applications

 Obtained either the Microsoft Certified: Azure Administrator Associate OR Microsoft Certified: Azure

Developer Associate certifications.

Course Objectives
Upon successful completion of this course, attendees will be able to:

 Plan for the transformation with shared

goals and timelines.

 Select a project and identify project

metrics and Key Performance Indicators

(KPIs).

 Create a team and agile organizational

structure.

 Design a tool integration strategy.

 Design a license management strategy

(e.g., Azure DevOps and GitHub users).

 Design a strategy for end-to-end

traceability from work items to working

software.

 Design an authentication and access

strategy.

 Design a strategy for integrating on-

premises and cloud resources.

 Describe the benefits of using Source

Control.

 Describe Azure Repos and GitHub.

 Migrate from TFVC to Git.

 Manage code quality including technical

debt SonarCloud, and other tooling

solutions.

 Build organizational knowledge on code

quality.

 Explain how to structure Git repos.

 Describe Git branching workflows.

 Leverage pull requests for collaboration

and code reviews.

 Leverage Git hooks for automation.

 Use Git to foster inner source across the

organization.

 Explain the role of Azure Pipelines and its

components.

 Configure Agents for use in Azure

Pipelines.

 Explain why continuous integration

matters.

https://docs.microsoft.com/en-us/learn/paths/azure-fundamentals/
https://docs.microsoft.com/en-us/learn/paths/azure-fundamentals/
https://docs.microsoft.com/en-us/learn/paths/az-104-administrator-prerequisites/
https://docs.microsoft.com/en-us/learn/paths/az-104-administrator-prerequisites/
https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/
https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/

Course Objectives Continued
 Implement continuous integration using Azure Pipelines.

 Define Site Reliability Engineering.

 Design processes to measure end-user satisfaction and analyse user feedback.

 Design processes to automate application analytics.

 Manage alerts and reduce meaningless and non-actionable alerts.

 Carry out blameless retrospectives and create a just culture.

 Define an infrastructure and configuration strategy and appropriate toolset for a release pipeline

and application infrastructure.

 Implement compliance and security in your application infrastructure.

 Describe the potential challenges with integrating open-source software.

 Inspect open-source software packages for security and license compliance.

 Manage organizational security and compliance policies.

 Integrate license and vulnerability scans into build and deployment pipelines.

 Configure build pipelines to access package security and license ratings.

Course Topics
Module 1: Planning for DevOps
 Transformation Planning

 Project Selection

 Team Structures

 Migrating to Azure DevOps

Module 2: Getting Started with Source
Control
 What is Source Control

 Benefits of Source Control

 Types of Source Control Systems

 Introduction to Azure Repos

 Introduction to GitHub

 Migrating from Team Foundation Version

Control (TFVC) to Git in Azure Repos

Module 3: Managing Technical Debt
 Identifying Technical Debt

 Knowledge Sharing within Teams

 Modernizing Development Environments

with Codespaces

Module 4: Working with Git for
Enterprise DevOps
 How to Structure Your Git Repo

 Git Branching Workflows

 Collaborating with Pull Requests in Azure Repos

 Why Care About Git Hooks

 Fostering Inner Source

 Managing Git Repositories

Module 5: Configuring Azure Pipelines
 The Concept of Pipelines in DevOps

 Azure Pipelines

 Evaluate the Use of Hosted versus Self-Hosted

Agents

 Agent Pools

 Pipelines and Concurrency

 Azure DevOps and Open-Source Projects

(Public Projects)

 Azure Pipelines YAML versus Visual

Designer

Course Topics Continued

Module 6: Implementing Continuous
Integration Using Azure Pipelines
 Continuous Integration Overview

 Implementing a Build Strategy

 Integration with Azure Pipelines

 Integrating External Source Control with

Azure Pipelines

 Set Up Self-Hosted Agents

Module 7: Managing Application
Configuration and Secrets
 Introduction to Security

 Implement a Secure Development

Process

 Rethinking Application Configuration

Data

 Manage Secrets, Tokens, and Certificates

 Integrating with Identity Management

Systems

 Implementing Application Configuration

Module 8: Implementing Continuous
Integration with GitHub Actions
 GitHub Actions

 Continuous Integration with GitHub

Actions

 Securing Secrets for GitHub Actions

Module 9: Designing and
Implementing a Dependency
Management Strategy
 Packaging Dependencies

 Package Management

 Migrating and Consolidating Artifacts

 Package Security

 Implementing a Versioning Strategy

Module 10: Designing a Release
Strategy
 Introduction to Continuous Delivery

 Release Strategy Recommendations

 Building a High-Quality Release pipeline

 Choosing the Right Release Management

Tool

Module 11: Implementing Continuous
Deployment Using Azure Pipelines
 Create a Release Pipeline

 Provision and Configure Environments

 Manage and Modularize Tasks and

Templates

 Configure Automated Integration and

Functional Test Automation

 Automate Inspection of Health

Module 12: Implementing an
Appropriate Deployment Pattern
 Introduction to Deployment Patterns

 Implement Blue-Green Deployment

 Feature Toggles

 Canary Releases

 Dark Launching

 AB Testing

 Progressive Exposure Deployment

Module 13: Managing Infrastructure
and Configuration Using Azure Tools
 Infrastructure as Code and Configuration

Management

 Create Azure Resources using ARM

Templates

 Create Azure Resources using Azure CLI

 Azure Automation with DevOps

 Desired State Configuration (DSC)

Course Topics Continued

Module 14: Third-Party Infrastructure
as Code Tools Available with Azure
 Chef

 Puppet

 Ansible

 Terraform

Module 15: Managing Containers
using Docker
 Implementing a Container Build Strategy

 Implementing Docker Multi-Stage Builds

Module 16: Creating and Managing
Kubernetes Service Infrastructure
 Azure Kubernetes Service

 Kubernetes Tooling

 Integrating AKS with Pipelines

Module 17: Implementing Feedback
for Development Teams
 Implement Tools to Track System Usage,

Feature Usage, and Flow

 Implement Routing for Mobile

Application Crash Report Data

 Develop Monitoring and Status

Dashboards

 Integrate and Configure Ticketing

Systems

Module 18: Implementing System
Feedback Mechanisms
 Site Reliability Engineering

 Design Practices to Measure End-User

Satisfaction

 Design Processes to Capture and Analyse

User Feedback

 Design Processes to Automate

Application Analytics

 Managing Alerts

 Blameless Retrospectives and a Just

Culture

Module 19: Implementing Security in
DevOps Projects
 Security in the Pipeline

 Azure Security Centre

Module 20: Validating Code Bases for
Compliance
 Open-Source Software

 Managing Security and Compliance

Policies

 Integrating License and Vulnerability

Scans

LABS INCLUDED

